11,247 research outputs found

    Boundary of Quantum Evolution under Decoherence

    Get PDF
    Relaxation effects impose fundamental limitations on our ability to coherently control quantum mechanical phenomena. In this letter, we establish physical limits on how closely can a quantum mechanical system be steered to a desired target state in the presence of relaxation. In particular, we explicitly compute the maximum coherence or polarization that can be transferred between coupled nuclear spins in the presence of very general decoherence mechanisms that include cross-correlated relaxation. We give analytical expressions for the control laws (pulse sequences) which achieve these physical limits and provide supporting experimental evidence. Exploitation of cross-correlation effects has recently led to the development of powerful methods in NMR spectroscopy to study very large biomolecules in solution. We demonstrate with experiments that the optimal pulse sequences provide significant gains over these state of the art methods, opening new avenues for spectroscopy of much larger proteins. Surprisingly, in spite of very large relaxation rates, optimal control can transfer coherence without any loss when cross-correlated relaxation rates are tuned to auto-correlated relaxation rates

    A Framework for Reference Management in the Semantic Web

    No full text
    Much of the semantic web relies upon open and unhindered interoperability between diverse systems. The successful convergence of multiple ontologies and referencing schemes is key. This is hampered by a lack of any means for managing and communicating co-references. We have therefore developed an ontology and framework for the exploration and resolution of potential co-references, in the semantic web at large, that allow the user to a) discover and record uniquely identifying attributes b) interface candidates with and create pipelines of other systems for reference management c) record identified duplicates in a usable and retrievable manner, and d) provide a consistent reference service for accessing them. This paper describes this ontology and a framework of web services designed to support and utilise it

    Downbeat nystagmus: aetiology and comorbidity in 117 patients

    Get PDF
    Objectives: Downbeat nystagmus (DBN) is the most common form of acquired involuntary ocular oscillation overriding fixation. According to previous studies, the cause of DBN is unsolved in up to 44% of cases. We reviewed 117 patients to establish whether analysis of a large collective and improved diagnostic means would reduce the number of cases with ``idiopathic DBN'' and thus change the aetiological spectrum.Methods: The medical records of all patients diagnosed with DBN in our Neurological Dizziness Unit between 1992 and 2006 were reviewed. In the final analysis, only those with documented cranial MRI were included. Their workup comprised a detailed history, standardised neurological, neuro-otological and neuro-ophthalmological examination, and further laboratory tests.Results: In 62% (n = 72) of patients the aetiology was identified (``secondary DBN''), the most frequent causes being cerebellar degeneration (n = 23) and cerebellar ischaemia (n = 10). In 38% (n = 45), no cause was found (``idiopathic DBN''). A major finding was the high comorbidity of both idiopathic and secondary DBN with bilateral vestibulopathy (36%) and the association with polyneuropathy and cerebellar ataxia even without cerebellar pathology on MRI.Conclusions: Idiopathic DBN remains common despite improved diagnostic techniques. Our findings allow the classification of ``idiopathic DBN'' into three subgroups: ``pure'' DBN (n = 17); ``cerebellar'' DBN (ie, DBN plus further cerebellar signs in the absence of cerebellar pathology on MRI; n = 6); and a ``syndromatic'' form of DBN associated with at least two of the following: bilateral vestibulopathy, cerebellar signs and peripheral neuropathy (n = 16). The latter may be caused by multisystem neurodegeneration

    Sub-Riemannian Geometry and Time Optimal Control of Three Spin Systems: Quantum Gates and Coherence Transfer

    Full text link
    Many coherence transfer experiments in Nuclear Magnetic Resonance Spectroscopy, involving network of coupled spins, use temporary spin-decoupling to produce desired effective Hamiltonians. In this paper, we show that significant time can be saved in producing an effective Hamiltonian, if spin-decoupling is avoided. We provide time optimal pulse sequences for producing an important class of effective Hamiltonians in three spin networks. These effective Hamiltonians are useful for coherence transfer experiments and implementation of quantum logic gates in NMR quantum computing. It is demonstrated that computing these time optimal pulse sequences can be reduced to geometric problems that involve computing sub-Riemannian geodesics on Homogeneous spaces

    Semantics, sensors, and the social web: The live social semantics experiments

    Get PDF
    The Live Social Semantics is an innovative application that encourages and guides social networking between researchers at conferences and similar events. The application integrates data and technologies from the Semantic Web, online social networks, and a face-to-face contact sensing platform. It helps researchers to find like-minded and influential researchers, to identify and meet people in their community of practice, and to capture and later retrace their real-world networking activities at conferences. The application was successfully deployed at two international conferences, attracting more than 300 users in total. This paper describes this application, and discusses and evaluates the results of its two deployment

    Broadband Relaxation-Optimized Polarization Transfer in Magnetic Resonance

    Full text link
    Many applications of magnetic resonance are limited by rapid loss of spin coherence caused by large transverse relaxation rates. In nuclear magnetic resonance (NMR) of large proteins, increased relaxation losses lead to poor sensitivity of experiments and increased measurement time. In this paper we develop broadband relaxation optimized pulse sequences (BB-CROP) which approach fundamental limits of coherence transfer efficiency in the presence of very general relaxation mechanisms that include cross-correlated relaxation. These broadband transfer schemes use new techniques of chemical shift refocusing (STAR echoes) that are tailored to specific trajectories of coupled spin evolution. We present simulations and experimental data indicating significant enhancement in the sensitivity of multi-dimensional NMR experiments of large molecules by use of these methods

    Tube Width Fluctuations in F-Actin Solutions

    Get PDF
    We determine the statistics of the local tube width in F-actin solutions, beyond the usually reported mean value. Our experimental observations are explained by a segment fluid theory based on the binary collision approximation (BCA). In this systematic generalization of the standard mean-field approach effective polymer segments interact via a potential representing the topological constraints. The analytically predicted universal tube width distribution with a stretched tail is in good agreement with the data.Comment: Final version, 5 pages, 4 figure
    corecore